
COURSE NAME:
DATA WAREHOUSING & DATA MINING

LECTURE 7
TOPICS TO BE COVERED:

 Data warehouse implementation
 Computation of data cubes
 Modelling OLAP data

 Data warehouses contain huge volumes of
data. OLAP servers demand that decision
support queries be answered in the order of
seconds. Therefore, it is crucial for data
warehouse systems to support highly
efficient cube computation techniques,
access methods and query processing
techniques.

EFFICIENT COMPUTATION OF DATA CUBES

 At the core of multidimensional data analysis
is the efficient computation of aggregations
across many sets of dimensions.

 In SQL terms, these aggregations are
referred to as
group-by’s. Each group-by can be
represented by a cuboid, where the set of
group-by’s forms a lattice of cuboids defining
a data cube.

THE COMPUTE CUBE OPERATOR

 The compute cube operator computes aggregates
over all subsets of the dimensions specified in the
operation.

 This can require excessive storage space,
especially for large numbers of dimensions.

 E.g.
 “Compute the sum of sales, grouping by city and item.”
 “Compute the sum of sales, grouping by city.”
 “Compute the sum of sales, grouping by item.”

 Data cube can be viewed as a lattice of cuboids
 The bottom-most cuboid is the base cuboid
 The top-most cuboid (apex) contains only one cell
 How many cuboids in an n-dimensional cube with L

levels?

 Where Li is the number of levels associated with
dimension i.

September 23, 2014

7

)1
1

(

n

i iLT

MATERIALIZATION OF DATA CUBE

There are three choices for data cube materialization given a base cuboid:

 1. No materialization: Do not precompute any of the “nonbase” cuboids.
This leads to computing expensive multidimensional aggregates on the fly,
which can be extremely slow.

 2. Full materialization: Precompute all of the cuboids. The resulting lattice
of computed cuboids is referred to as the full cube. This choice typically
requires huge amounts of memory space in order to store all of the
precomputed cuboids.

 3. Partial materialization: Selectively compute a proper subset of the
whole set of possible Cuboids Partial materialization represents an
interesting trade-off between storage space and response time.

 Selection of which cuboids to materialize
 Based on size, sharing, access frequency, etc.

INDEXING OLAP DATA

 To facilitate efficient data accessing, most data
warehouse systems support index structures
and materialized views (using cuboids).

 To index OLAP data by bitmap indexing and join
indexing.

INDEXING OLAP DATA: BITMAP INDEX

 The bitmap indexing method is popular in OLAP products because it
allows quick searching in data cubes. The bitmap index is an alternative
representation of the record ID (RID) list.

 In the bitmap index for a given attribute, there is a distinct bit vector, Bv,
for each value v in the domain of the attribute. If the domain of a given
attribute consists of n values, then n bits are needed for each entry in
the bitmap index

 (i.e., there are n bit vectors). If the attribute has the value v for a given
row in the data table, then the bit representing that value is set to 1 in
the corresponding row of the bitmap index. All other bits for that row are
set to 0.

INDEXING OLAP DATA: BITMAP INDEX
 Index on a particular column
 Each value in the column has a bit vector: bit-op is fast
 The length of the bit vector: # of records in the base table
 The i-th bit is set if the i-th row of the base table has the value for

the indexed column
 not suitable for high cardinality domains

Cust Region Type
C1 Asia Retail
C2 Europe Dealer
C3 Asia Dealer
C4 America Retail
C5 Europe Dealer

RecID Retail Dealer
1 1 0
2 0 1
3 0 1
4 1 0
5 0 1

RecID Asia Europe Am erica
1 1 0 0
2 0 1 0
3 1 0 0
4 0 0 1
5 0 1 0

Base table Index on Region Index on Type

INDEXING OLAP DATA: JOIN INDICES

 Join index: JI(R-id, S-id) where R (R-id, …) S (S-id, …)
 Traditional indices map the values to a list of record ids

 It materializes relational join in JI file and speeds up relational
join

 In data warehouses, join index relates the values of the
dimensions of a start schema to rows in the fact table.
 E.g. fact table: Sales and two dimensions city and product

 A join index on city maintains for each distinct city a list of
R-IDs of the tuples recording the Sales in the city

 Join indices can span multiple dimensions

 Join indexing registers the joinable rows of two or more
relations from a relational database, reducing the overall cost
of OLAP join operations.

INDEXING OLAP DATA: JOIN INDEXING

Linkages between a sales fact table and dimension tables for location and
item.

INDEXING OLAP DATA: JOIN INDEXING

Join index tables based on the linkages between the sales fact table and
dimension tables for location and item

EFFICIENT PROCESSING OLAP QUERIES

 Determine which operations should be performed on the available cuboids

 Transform drill, roll, etc. into corresponding SQL and/or OLAP operations,

e.g., dice = selection + projection

 Determine which materialized cuboid(s) should be selected for OLAP op.

 Let the query to be processed be on {brand, province_or_state} with the

condition “year = 2004”, and there are 4 materialized cuboids available:

1) {year, item_name, city}

2) {year, brand, country}

3) {year, brand, province_or_state}

4) {item_name, province_or_state} where year = 2004

Which should be selected to process the query?

